Novel Ring Contraction of 1,2-Diazocine System.

Hydrolysis of 7-Substituted 4-Acetoxy- and 4-Phthalimido-3,8-diphenyl-1,2-diazocines

Leading to the Formation of Pyrazoles#

Seiichi YOGI,* Kozo HOKAMA, and Otohiko TSUGE*,+

Department of Chemistry, Faculty of Science, Ryukyu University,

Nishihara, Nakagami-gun, Okinawa 903-01

*Research Institute of Industrial Science, Kyushu University, Kasugakoen, Kasuga 816

A novel ring contraction of 1,2-diazocine system to pyrazoles via [5.5]bicyclic intermediates has been demonstrated by hydrolysis of 7-substituted 4-acetoxy- and 4-phthalimido-3,8-diphenyl-1,2-diazocines.

We recently reported the synthesis of various 4,7-disubstituted 3,8-diphenyl-1,2-diazocines which are the first example for stable substituted monocyclic 1,2-diazocines. $^{1-4}$) In contrast to the parent 1,2-diazocine which decomposed slowly in solution at room temperature, and rapidly neat to benzene and pyridine with comparable rates, 5) our stable 1,2-diazocines thermally decomposed to only pyridine derivatives via their valence tautomers, diazabicyclo[4.2.0]octatrienes, providing a new route for the synthesis of various substituted pyridines which are difficult to prepare by other methods. $^{1-4}$) In this communication we describe a novel ring contraction of 7-substituted 4-acetoxy- and 4-phthalimido-3,8-diphenyl-1,2-diazocines, via [5.5]bicyclic intermediates, induced by hydrolysis of 4-substituents.

When 4-acetoxy-7-chloro-3,8-diphenyl-1,2-diazocine $(\underline{1a})^1$) was stirred in a 3.3% ethanolic potassium hydroxide solution at room temperature for 4 h, ethyl (Z)- β -(3,5-diphenylpyrazol-4-yl)acrylate $(\underline{2})$ and its (E)-isomer $(\underline{3})$ were isolated in 50 and 0.8% yields, respectively. Hydrolysis of 4-acetoxy-7-phenylthio-3,8-diphenyl-1,2-diazocine $(\underline{1b})^2$) under similar conditions afforded the same pyrazoles, $\underline{2}$ (60%) and $\underline{3}$ (13%), together with benzenethiol (27%). Structural elucidation of the pyrazoles, $\underline{2}$ and $\underline{3}$, was accomplished on the basis of spectral data⁶) as well as of chemical conversions. The pyrazoles, $\underline{2}$ and $\underline{3}$, correspond to ring contraction products accompanied by both the hydrolysis of 4-acetoxy group and elimination of 7-substituent in $\underline{1}$.

7-Chloro-4-phthalimido-3,8-diphenyl-1,2-diazocine $(\underline{4})^4$) was less susceptible to hydrolysis under similar conditions. The 1,2-diazocine $\underline{4}$ was heated in an ethanolic potassium hydroxide solution under reflux for 4 h to give $(Z)-\beta-(3,5-diphenylpyra-zol-4-yl)$ acrylic acid $(\underline{5})$, mp 253-254 °C, which was readily obtained by hydrolysis of $\underline{2}$, in 62% yield, together with small amounts of $(Z)-\beta-(3,5-diphenylpyrazol-4-yl)$ -acrylonitrile $(\underline{6})$ and its (E)-isomer $(\underline{7})$ (each 4% yield). On treatment with hydra-

 $^{^{\#}}$ Dedicated to Professor Teruaki Mukaiyama on the occasion of his 60th birthday.

Scheme 1.

zine hydrate (3 equiv.) in refluxing ethanol for 5 h, however, $\underline{4}$ gave (Z)-isomer ($\underline{6}$) in 73% yield; in this case (E)-isomer ($\underline{7}$) was not detected. The structures of $\underline{6}$ (mp 226-227 °C) and $\underline{7}$ (mp 203-205 °C), which are similar to those of $\underline{2}$ and $\underline{3}$ respectively, were again assigned on the basis of spectral data as well as of chemical conversions.

On catalytic hydrogenations over Pd/charcoal in ethanol at room temperature, isomeric two pyrazoles, $\underline{2}$ and $\underline{3}$, or $\underline{6}$ and $\underline{7}$, gave the same hydrogenated products, $\underline{8}$ or $\underline{9}$, in good yields, respectively. Tradiation of a benzene solution of $\underline{2}$ with a 150W high-pressure mercury lamp afforded intramolecularly cyclized products, 5-ethoxycarbonyl-3-phenyl-4,5-dihydronaptho[1,2-c]pyrazole ($\underline{10}$) and its aromatized compound ($\underline{11}$), in 59 and 16% yields, respectively. Similarly, photochemical cycli-

zation of $\underline{6}$ gave 5-cyano analogs, $\underline{12}$ (73%) and $\underline{13}$ (4%)⁸) (Scheme 1).

Next, we have investigated hydrolysis of the 1,2-diazocines ($\underline{1}$) under acidic conditions. When $\underline{1a}$ was treated with hydrochloric acid in ethanol under reflux for 2 h, the pyrazole $\underline{2}$ and 6-benzoyl-3-chloro-2-phenylpyridine ($\underline{14}$)¹), which was derived from thermolysis of $\underline{1a}$, were obtained in 52 and 2% yields, respectively. On the other hand, hydrolysis of $\underline{1b}$ under similar conditions gave a 65% yield of a new bicyclic compound, 1,4-diphenyl-5-phenylthio-2,3-diazabicyclo[3.3.0]octa-3,6-dien-6-one ($\underline{15}$), whose structure was confirmed on the basis of spectral data. $\underline{9}$) On treatment with an ethanolic potassium hydroxide solution (room temp, 4 h), $\underline{15}$ was converted into $\underline{2}$ (62%) and $\underline{3}$ (14%). The formation of $\underline{15}$ can be assumed via a transannular ring contraction of intermediary hydroxydiazocine \underline{A} (Scheme 2), and provides a significant information for the formation of pyrazoles in hydrolysis of diazocines $\underline{1}$ and $\underline{4}$ under basic conditions.

Scheme 2.

The pathways for the formation of pyrazoles $\underline{2}$ and $\underline{6}$ from $\underline{1}$ and $\underline{4}$ respectively are illustrated in Scheme 2. The acetoxydiazocine $\underline{1}$ yields a bicyclic anion \underline{C} via a transannular reaction of an enolate intermediate \underline{B} , and subsequent attack of ethanol on the carbonyl group in \underline{C} with concurrent ring opening and elimination of X (Cl or SPh) gives $\underline{2}.^{10}$) Similarly, $\underline{4}$ gives $\underline{6}$ via a ring opening of \underline{F} , which is produced

Chemistry Letters, 1987

from \underline{E} through \underline{D} , with concurrent elimination of the chloride ion.

1) S. Yogi, K. Hokama, and O. Tsuge, Chem. Lett., <u>1982</u>, 1579; S. Yogi, K. Hokama, K. Ueno, and O. Tsuge, Bull. Chem. Soc. Jpn., <u>59</u>, 1087 (1986).

- 2) S. Yogi, K. Hokama, and O. Tsuge, Bull. Chem. Soc. Jpn., 59, xxxx (1986).
- 3) S. Yogi, K. Hokama, and O. Tsuge, Bull. Chem. Soc. Jpn., <u>59</u>, xxxx (1986).
- 4) S. Yogi, K. Hokama, S. Takayoshi, and O. Tsuge, Bull. Chem. Soc. Jpn., <u>60</u>, xxxx (1987).
- 5) B. M. Trost and R. M. Corry, J. Am. Chem. Soc., <u>93</u>, 5573 (1971); B. M. Trost, P. H. Schudder, R. M. Corry, N. J. Turro, V. Ramamurthy, and T. J. Katz, J. Org. Chem., <u>44</u>, 1264 (1979).
- 6) All the new compounds reported herein gave satisfactory elemental analyses. $\underline{2}$: Mp 170-171 °C; colorless needles; IR (KBr) 3200, 2900-3100, 1720, 1700, 1630, 970 cm⁻¹; 1 H NMR (CDCl₃) δ =0.89 (3H, t), 3.54 (2H, q), 5.90, 6.91 (each 1H, d, =CH, J=12.0 Hz), 7.1-7.6 (10H, m), 9.10 (1H, broad s, NH); 13 C NMR (CDCl₃) δ =13.88 (q), 60.00 (t), 111.59 (s, ring 4-C), 122.48 (d, =CH-COOEt), 127.77, 128.36, 128.83 (each d), 131.89 (s), 134.25 (d, CH=CH-COOEt), 147.24 (s, ring 3-, 5-C), 166.06 (s, C=0); MS m/z 318 (M⁺). $\underline{3}$: Mp 160-161 °C; colorless needles; IR (KBr) 3200, 2800-3050, 1705, 1690, 1630, 955, 860, 600 cm⁻¹; 1 H NMR (CDCl₃) δ =1.20 (3H, t), 4.12 (2H, q), 5.85, 7.65 (each 1H, d, =CH, J=16.0 Hz), 6.74 (1H, broad s, NH), 7.30-7.57 (10H, m); 13 C NMR (CD₃CN) δ =14.30 (q), 60.30 (t), 111.77 (s, ring 4-C), 117.66 (d, =CH-COOEt), 129.13 (d), 131.42 (s), 135.83 (d, CH=CH-COOEt), 148.77 (s, ring 3-, 5-C), 167.71 (s, C=0); MS m/z 318 (M⁺).
- 7) $\underline{8}$: Mp 153-154 °C; colorless needles; IR (KBr) 3200, 1725, 695 cm⁻¹; ¹H NMR (CDCl₃) δ =1.31 (3H, t), 2.15-2.5, 2.9-3.3 (each 2H, m), 3.95 (2H, q), 7.2-7.7 (10H, m), 7.9 (1H, broad s, NH); MS m/z 320 (M⁺). $\underline{9}$: Mp 186-187 °C; colorless needles; IR (KBr) 2208 cm⁻¹; ¹H NMR (CDCl₃) δ =2.1-2.5, 2.9-3.3 (each 2H, m), 7.3-7.8 (11H, m, ArH and NH); MS m/z 273 (M⁺).
- 8) $\underline{10}$: Mp 172-173 °C; colorless needles; IR (KBr) 3200, 1700 cm⁻¹; 1 H NMR (CDCl₃-DMSO-d₆) δ =1.10 (3H, t), 4.00 (2H, q), 3.0-3.5 (2H, m), 3.9-4.1 (1H, m), 7.1-8.0 (9H, m), 9.0 (1H, broad s, NH); MS m/z 318 (M⁺). $\underline{11}$: Mp 204-206 °C; colorless needles; IR (KBr) 3300, 1680 cm⁻¹; 1 H NMR (CDCl₃-DMSO-d₆) δ =1.45 (3H, t), 3.2-3.8 (1H, broad, NH), 4.45 (2H, q), 7.3-7.8 (5H, m), 7.8-8.05 (2H, m), 8.4-8.6 (1H, m), 8.68 (1H, s), 8.8-9.05 (1H, m); MS m/z 316 (M⁺). $\underline{12}$: Mp 210-211 °C; colorless needles; IR (KBr) 2800-3300, 2240 cm⁻¹; 1 H NMR (CDCl₃-DMSO-d₆) δ =3.0-3.4 (2H, q), 3.7-4.2 (1H, m), 7.1-7.9 (10H, m, ArH and NH); MS m/z 271 (M⁺). $\underline{13}$: Mp 289-291 °C; colorless needles; IR (KBr) 2800-3200, 2220 cm⁻¹; MS m/z 269 (M⁺).
- 9) $\underline{15}$: Mp 174-175 °C; yellow prisms; IR (KBr) 3300, 1710 cm⁻¹; 1 H NMR (CDCl₃) δ = 6.63, 8.14 (each 1H, d, =CH, J=6.0 Hz), 6.7-7.2 (6H, m, ArH and NH), 7.2-7.5 (8H, m), 7.9-8.2 (2H, m); 13 C NMR (CD₃CN-DMSO-d₆) δ =74.30 (s, 1-C), 82.12 (s, 5-C), 126.18, 128.01, 128.30, 128.54, 130.18 (each d), 131.54 (s), 133.30 (d, 7-C), 136.42 (d), 146.30 (s, 4-C), 165.79 (d, 6-C), 206.77 (s, C=0); MS m/z 273 (M⁺ PhS, 100%).
- 10) The (E)-isomer $\underline{3}$ was assumed to be formed via a reverse Michael reaction of (Z)-isomer $\underline{2}$ with a leaving anion. (Received October 9, 1986)